Real Space Observations of Magnesium Hydride Formation and Decomposition
نویسندگان
چکیده
منابع مشابه
Hydrogen Desorption Properties of Nanocrystalline MgH2-10 wt.% ZrB2 Composite Prepared by Mechanical Alloying
Storage of hydrogen is one of the key challenges in developing hydrogen economy. Magnesium hydride (MgH2) is an attractive candidate for solid-state hydrogen storage for on-board applications. In this study, 10 wt.% ZrB2 was co-milled with magnesium hydride at different milling times to produce nanocrystalline composite powder. The effect of milling time and additive on the hydrogen desorption...
متن کاملMagnesium hydride-promoted dearomatisation of pyridine.
Reaction of pyridine with well defined magnesium hydride species results in heterocycle dearomatisation by a hydride transfer which occurs with the formation of magnesium compounds containing 1,2- and 1,4-dihydropyridide anions as the respective kinetic and thermodynamic products.
متن کاملReaxFF(MgH) reactive force field for magnesium hydride systems.
We have developed a reactive force field (ReaxFF(MgH)) for magnesium and magnesium hydride systems. The parameters for this force field were derived from fitting to quantum chemical (QM) data on magnesium clusters and on the equations of states for condensed phases of magnesium metal and magnesium hydride crystal. The force field reproduces the QM-derived cell parameters, density, and the equat...
متن کاملFormation of transition metal hydrides at high pressures
Silane (SiH4) is found to (partially) decompose at pressures above 50 GPa at room temperature into pure Si and H2. The released hydrogen reacts with surrounding metals in the diamond anvil cell to form metal hydrides. A formation of rhenium hydride is observed after the decomposition of silane. From the data of a previous experimental report (Eremets et al., Science 319, 1506 (2008)), the claim...
متن کاملMECHANO-CHEMICAL SYNTHESIS OF NANOSTRUCTURED HYDRIDE COMPOSITES BASED ON Li-Al-N-Mg FOR SOLID STATE HYDROGEN STORAGE
It is observed that large quantities of hydrogen (H2) are released at ambient temperatures during the mechano-chemical synthesis of the Li-Al-N-Mg-based hydride composites using an energetic ball milling in a unique magneto-mill. For the (nLiAlH4+LiNH2; n=1, 3, 11.5, 30) composite, at the molar ratio n=1, the LiNH2 constituent destabilizes LiAlH4 and enhances its decomposition to Li3AlH6, Al an...
متن کامل